Decidability of Modules over a BéZout Domain D+xq[X] with d a Principal Ideal Domain and Q its Field of fractions
نویسندگان
چکیده
We describe the Ziegler spectrum of a Bézout domain B = D + XQ[X] where D is a principal ideal domain and Q is its field of fractions; in particular we compute the Cantor–Bendixson rank of this space. Using this, we prove the decidability of the theory of B-modules when D is “sufficiently” recursive.
منابع مشابه
Locally GCD domains and the ring $D+XD_S[X]$
An integral domain $D$ is called a emph{locally GCD domain} if $D_{M}$ is aGCD domain for every maximal ideal $M$ of $D$. We study somering-theoretic properties of locally GCD domains. E.g., we show that $%D$ is a locally GCD domain if and only if $aDcap bD$ is locally principalfor all $0neq a,bin D$, and flat overrings of a locally GCD domain arelocally GCD. We also show that the t-class group...
متن کاملOn nest modules of matrices over division rings
Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...
متن کاملOn Bézout Domains
Recall that a commutative domain R in which every finitely generated ideal is principal is called a Bézout domain. By definition, a noetherian Bézout domain is a principal ideal domain. Several examples of non-noetherian Bézout domains are listed in [1], 243-246. Recall also that a commutative domain R is called an Elementary Divisor domain if, given any matrix A with coefficients in R, there e...
متن کاملMULTIPLICATION MODULES THAT ARE FINITELY GENERATED
Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...
متن کاملOn special submodule of modules
Let $R$ be a domain with quotiont field $K$, and let $N$ be a submodule of an $R$-module $M$. We say that $N$ is powerful (strongly primary) if $x,yin K$ and $xyMsubseteq N$, then $xin R$ or $yin R$ ($xMsubseteq N$ or $y^nMsubseteq N$ for some $ngeq1$). We show that a submodule with either of these properties is comparable to every prime submodule of $M$, also we show tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Symb. Log.
دوره 79 شماره
صفحات -
تاریخ انتشار 2014